Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wolfgang Braun, Beatrice Calmuschi* and Albrecht Salzer

Institute of Inorganic Chemistry, RWTH Aachen University, Prof.-Pirlet-Straße 1, 52074 Aachen, Germany

Correspondence e-mail:
beatrice.calmuschi@ac.rwth-aachen.de

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.022$
$w R$ factor $=0.061$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tricarbonyl $\left[\eta^{6}-(R)-N, N\right.$-dimethyl-1-phenylethylamine]chromium (0)

The title complex, $\left[\mathrm{Cr}\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}\right)(\mathrm{CO})_{3}\right]$, has a typical threelegged piano-stool structure, as is expected for an η^{6}-arenetricarbonylchromium compound. The conformation is staggered with respect to the side chain and one of the carbonyl ligands. The side chain bearing the stereogenic centre adopts a conformation with the H atom pointing downwards, leaving the dimethylamine group above the ring plane.

Comment

Tricarbonyl $\left[\eta^{6}-(R)\right.$ - N, N-dimethyl-1-phenylethylamine $]$ chromium(0), (I), a common starting material for various orthofunctionalizations to afford planar chiral [i.e. a kind of chirality in which a plane is the decisive element (cf center, axis and helix in the other three kinds of chirality)] compounds (Berger et al., 2003; Uemura et al., 1993; Christian et al., 1994; Fukuzawa et al., 1997; Weber \& Jones, 2001; Braun et al., 2003), has been structurally characterized.

(I)

The conformation of the tricarbonylchromium moiety is staggered with respect to the side chain and one of the carbonyl ligands. The α-chain itself adopts a conformation in which the smallest atom (H) on the stereogenic C atom points downwards to the sterically demanding tricarbonylchromium group. This causes the dimethylamine group to be placed

Figure 1
The crystal structure of the molecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn with arbitrary radii.

Received 23 March 2005
Accepted 30 March 2005
Online 9 April 2005
above the ring plane of the arene in close proximity to the ortho- H atom. The torsion angle $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$ is $-63.57(18)^{\circ}$. This confirms that the results obtained by Heppert et al. (1990) for solutions by NOE (nuclear Overhauser effect) measurements apply also in the solid state. This preferred conformation enables the diastereospecific deprotonation of the pro- $(R) \mathrm{H}$ atom in the reaction with ${ }^{t} \mathrm{BuLi}$ due to the pre-coordination of the Li atom by the N atom.

Experimental

The title chromium tricarbonyl complex was synthesized by double methylation of (R)-1-phenylethylamine with formaldehyde and formic acid in an Eschweiler-Clarke reaction and subsequent thermal complexation of dimethylamine with hexacarbonylchromium in a mixture of n - $\mathrm{Bu}_{2} \mathrm{O}$ and tetrahydrofuran. After work-up, single crystals were obtained by slow evaporation of a solution in diethyl ether under nitrogen at room temperature.

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=285.26$
Orthorhombic, $P 2_{1_{1}} 2_{1} 2_{1}$
$a=10.6453$ (18) \AA
$b=10.7928$ (19) \AA
$c=11.458$ (2) A
$V=1316.5(4) \AA^{3}$
$Z=4$
$D_{x}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.611, T_{\text {max }}=0.892$
16290 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.061$
$S=1.07$
2869 reflections
165 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 8096 reflections
$\theta=2.6-27.0^{\circ}$
$\mu=0.87 \mathrm{~mm}^{-1}$
$T=110$ (2) K
Irregular fragment, yellow
$0.63 \times 0.37 \times 0.13 \mathrm{~mm}$

> 2869 independent reflections
> 2807 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=27.0^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-13 \rightarrow 13$
> $l=-14 \rightarrow 14$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.075 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e}_{\mathrm{A}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=-0.003(14)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Cr}-\mathrm{C} 3$	$1.8246(17)$	$\mathrm{N}-\mathrm{C} 4$	$1.462(2)$
$\mathrm{Cr}-\mathrm{C} 2$	$1.8479(17)$	$\mathrm{N}-\mathrm{C} 7$	$1.472(2)$
$\mathrm{Cr}-\mathrm{C} 1$	$1.8537(18)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.529(2)$
$\mathrm{N}-\mathrm{C} 5$	$1.460(2)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.529(2)$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 2$	$88.00(7)$	$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$107.03(12)$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 1$	$88.82(7)$	$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$	$116.25(14)$
$\mathrm{C} 2-\mathrm{Cr}-\mathrm{C} 1$	$90.44(8)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$113.84(13)$
$\mathrm{C} 5-\mathrm{N}-\mathrm{C} 4$	$110.56(14)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13$	$118.76(14)$
$\mathrm{C} 5-\mathrm{N}-\mathrm{C} 7$	$112.06(13)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$123.79(14)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{C} 7$	$113.57(13)$		

H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. The methyl groups bonded to N atoms were allowed to rotate as rigid groups.

Figure 2
View of the molecule along the α-C7-ipso-C8-axis, displaying the conformation of the side chain. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn with arbitrary radii.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Financial support by the Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 440 'Methods in Asymmetric Synthesis' and Sonderforschungsbereich 380 'Asymmetric Synthesis with Chemical and Biological Methods') is gratefully acknowledged. We thank BASF AG for a gift of (R)-phenylethylamine.

References

Berger, A., Djukic, J.-P., Pfeffer, M., Lacour, J., Vial, L., De Cian, A. \& Kyritsakas-Gruber, N. (2003). Organometallics, 22, 5243-5260.
Braun, W., Salzer, A., Drexler, H.-J., Spannenberg, A. \& Heller, D. (2003). J. Chem. Soc. Dalton Trans. pp. 1606-1613.
Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Christian, P. W. N., Gil, R., Muniz-Fernandez. K., Thomas, S. E., Wierzhleyski, A. T. (1994). J. Chem. Soc. Chem. Commun. 13, 1569-1570.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fukuzawa, S., Kato, H., Ohtaguchi, M., Hayashi, Y. \& Yamazaki, H. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3059-3063.
Heppert, J. A., Aube, J., Thomas-Miller, M. E., Milligan, M. L. \& Takusagawa, F. (1990). Organometallics, 9, 727-739.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Uemura, M., Miyake, R., Nakayama, K., Shiro, M. \& Hayashi, Y. (1993). J. Org. Chem. 58, 1238-1244.
Weber, I. \& Jones, G. B. (2001). Tetrahedron Lett. 42, 6983-6986.

